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A Technique for Determining the Local Oscillator
Waveforms in a Microwave Mixer

A. R. KERR, ASSOCIATE MEMBER, IEEE

Abstract—A technique is described which enables the large-
signal current and voltage waveforms to be determined for a mixer
diode. This techmique is applicable to any configuration where the
impedance seen by the diode at the local oscillator (LO) frequency
and its harmonics is known.

I. INTRODUCTION

The performance of a diode mixer is largerly determined by the
current and voltage waveforms produced at the diode by the local
oscillator (1.O). These waveforms depend on the diode itself, and
on the impedance of its embedding network at the LO frequency and
its harmonics. This short paper describes a method for computing the
diode eurrent and voltage waveforms for any mixer in which the
impedance seen by the diode at the LO frequency and its harmonics
is known.

In the past there have been various approaches to this problem.
Torrey and Whitmer [17] and other- have assumed a sinusoidal
driving voltage at the diode, all the harmonics of the LO being
assumed to be short-circuited. Fleri and Cohen [27] used both digital
and analog computers to solve the nonlinear problem, assuming
simple lumped-element embedding networks.

Egami [37] and Gwarek [4] have used a harmonic balance ap-
proach in the frequency domain. However, convergence has been
found difficult to achieve for some ecircuits when many harmonics
are considered, and especially at large 1O drive levels; and the
initial guess has a strong effect on the rate of convergence.

A recent approach by Gwarek [4] uses a time-domain analysis
to determine the diode waveforms in an embedding network con-
sisting of a simple lumped-element network in series with a string of
voltage sources, one at each harmonic of the LO. The voltage
sources are input-voltage dependent so that the embedding network
is able to simulate any complex network as it appears at the LO
frequency and its harmonics. It is reported that this method is
convergent, and more economical of computer time and memory
than the harmonie balance technique.

In the approach described here, the circuit of Fig. 1(a) is modified
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Fig. 1. (a) The mixer circuit for which v and i are to be determined.

(b) The modified circuit which has the same steady-state vq and ia
provided L is an integral number of wavelengths at the LO frequency.
The right- and left-propagating waves on the transmission line are
denoted by e and er.

Z, —% 2o e,
I |—"I A : I,—ww——o——
I ] ! i
[ | 1 T 1 T
2pE ™" v ZEL,neJm“' ® EMBEDDING
1 T Vd ' T — Ve
! ! | ! NETWORK
ok of ' et Zelnfio)
2[WotpiEL |k Ga 2E, oo abo |,
2[VetPoELo] 2E,

@) (b)

Fig. 2. The two circuits whose steady-state solutions are alternately
computed to determine the steady-state solution of Fig. 1(b). The
simple nonlinear circuit (a) is solved in the time domain, the linear
circuit (b) in the frequency domain. Source amplitudes are given by
9)-(11).

by the insertion of a transmission line, Fig. 1(b), which, by virtue
of its electrical length at the LO frequency and its harmonics, has
no effect on the steady-state solution of the problem. It will be
shown that this enables the problem to be solved iteratively by
alternately solving the simpler circuit problems shown in Fig. 2(a)
and (b).

Hypothestis: The steady-state 74 and v; waveforms for the two cir-
cuits of Fig. 1 are the same. Certainly the solution for Fig. 1(b) is a
valid solution for Fig. 1(a), but there exists the possibility of more
than one steady-state solution for Fig. 1(a), the one which is finally
reached being determined by the particular path taken to reach the
steady state.! An hypothesis equivalent to this one is implicit in any
method of solution in which the calculation of the actual turn-on
transient is bypassed.

II. METHOD

Consider the circuit of Fig. 1(b) with the diode initially dis-
connected. When the diode is connected transient reflections oceur
alternately at the two ends of the transmission line until eventually
the steady-state condition is approached. In the steady state, waves
of constant amplitude, containing many L.O harmonics generated by
the diode, propagate in each direction. The approach taken here is
to let the transmission line become so long that in the periods be-
tween transient reflections a steady-state condition is reached

t As an example of this, it has been observed that for some mixers,
as the LLO power is increased from zero, parametric oscillation wiil occur.
At higher power levels the oscillation ceases, and it cannot be made to
reappear unless the LO power is first reduced below some threshold
value and then increased again.
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between the transmission line and the diode on the one hand,
and between the transmission line and the embedding network on
the other. The problem then reduces to that of alternately deter-
mining the steady-state solutions for the two simple circuits of Fig.
2, each time changing the voltage sources in a predetermined way,
until the terminal currents and voltages are the same for the two
cireuits.

For clarity, a simple exponential diode will be assumed in deserib-
ing the method: the inclusion of diode capacitance and series re-
sistance will be described later. For.the simple diode

1a = to[exp (avs) — 1] 1

The right- and left-propagating waves on the transmission line are
denoted by er(2,t) and e (z,t) as shown in Fig. 1(b). These waves
must conform to the boundary condition imposed by (1), with

er(L,t) + er(L,t) = va(t) (2a)
and
Ler(L,t) — en (L) 1/Zv = 14(t).

At the left-hand end of the transmission line the voltage and
current are

(2b)

ve(t) = er(0,8) + er(0,1) (3a)
and ‘
() = [ez(0,t) — er(0,8) 1/ Z0. (3b)
It is convenient to express v, and 7, as Fourier series
ve(®) = 2 Ve exp ( jnwrot) (4a)
n=0
and
1(t) = Z Ie.n exp (jnwrot) (4b)
n=0

where the Fourier coefficients V., and I. ., are, in general, complex.
The steady-state boundary condition defined by the embedding
network is

Vo
= Z,(jnwro), n>1 (5a)
I
Vor — V, )
——‘—I———’Q = Z.( joro) (5b)
e,1
and
Veo— V.
0T TR 70 (5¢)
Lo

where V5o and Vg are the open-circuit LO and dec voltages of the
embedding network.

The solution is commenced at time ¢ = 0 when the diode is first
connected to the circuit of Fig. 1(b). The equivalent circuit of
Fig. 2(a) applies, but with only two voltage sources, Vg at de, and
Vio at the LO frequency. For the simple diode assumed in this
example v; () and 74 (f) are easily computed. During the time interval
0 <t <2y

er(Lyt) = Vg -+ Vio exp (jorot) (6a)
and
en{Lyt) = va(t) — 4a(t) 2o (6b)

where {; is the propagation delay on the transmission line. At the
left-hand end of the transmission line the left-propagating wave is

e, (0,t) = ep(Lit — t2). (7

Since ez, is composed only of the LO frequency and its harmonies
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for which the transmission line is an integral number of wavelengths
long

er(L,t — 1) = er(L,1). (8)
Therefore, during the time interval t; < ¢ < 34
er(0,t) = va(t) — 24() Zo. 9

Expressing (9) as a Fourier series gives

er(0,) = 2 Ernexp (jnwrol).

n=0

(10)

The embedding network reaches steady state after some time & so
that in the interval t; + 3 <t < 3{; a new steady-state right-
propagating wave eg(0,f) exists. This may be determined knowing
the complex reflection coefficient of the embedding network at each
harmonic of the LO

Zo( jnwro) — Zo

Zo(jnowo) + 2o ()

pn =
Then

er(0,t) = VB + Vioexp (jorot) + 2. pnBrnexp (jnwrot). (12)
n=0

Again er contains only components at the LO frequency and its

harmonics, and so after the appropriate delay time #; we have

er(Lt) = er(0,t). (13)

This applies during the time interval 2t; + 8 < ¢t < 44;. The diode
voltage and current v;(f) and 43(¢) are again calculated, giving the
next, value of er(L,t) from (6b), which commences the next cycle
of iteration.

Summary of Iteration Cycle

The typical cycle of iteration may be summarized as follows.

Step 1): From the diode voltage and current, 2;(f) and (%),
compute the left-propagating wave er. (L,f) using (6b).

Step 2): After a time {3 the left-propagating wave reaches the
embedding network causing a response which reaches steady state
after a further time §. Since the transmission line can be made as
long as required, it is always possible to ensure that ¢ < {;. The new
steady-state right-propagating wave at the embedding network
er(0,t) is calculated using (11) and (12).

Step 3): After a further propagation delay ¢; this wave becomes
the new right-propagating wave at the diode, ep(L,t) from which
new values of diode voltage and current are computed using the
equivalent circuit of Fig. 2(a).

Convergence

Under steady-state operation the voltages and currents at the
two ends of the transmission line are equal—that is v4(¢) = v.(t)

and 74(t) = —4.(t). In the frequency domain this is equivalent to
Van = Ven (14a)
and
Tin = —Iom (14b)

where Vin, Tin, Ven and I, are the nth Fourier coefficients of vg,
14, Ve, and 7., respectively. It follows that

Van Ven
Ton Tow’ (15)
It is convenient to define a diode impedance
Za(jnwro) = Van/Ian (16)
Then with (5a) and (15)
Za(jnwro) = —Zs(jnwro),  for n > 1. an
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We define a convergence parameter
| Za( jnwro) /| Ze( jnwro) |,

which must be equal to unity for a completely converged solution.
For the example given in the following (Fig. 3), the convergence
parameter is shown in Fig. 4 as a funetion of n.

The choice of the hypothetical transmission-line characteristic
impedance Z, has some effect on the rate of convergence of the
solution. A value of 50 2 has been used in the example; the effects of
varying it have not been investigated in detail.

n>1

Finite Number of Harmonics

In a practical computer solution of the mixer problem it is possible
to consider only a finite number N of harmonics of the LO. This is
electrically equivalent to defining the embedding impedance for the
higher LO harmonics equal to the transmission-line characteristic
impedance

Z,(jnwro) = Zo, n > N. (18)

To show this equivalence, consider the circuit of Fig. 1(b), with Z,
as defined in (18), so that p, = 0 for n > N (11). From (12) and
(13) we see that the right-propagating wave ez(L,f) contains no
frequency components above the Nth LO harmonic. It follows that
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Fig. 3. (a) The waveguide mixer used in the example, and (b) its
equivalent circuit. The embedding impedance Z, seen by the diode is
tabulated as a function of harmonic number n. Guide impedance Z, is
given by (19). Parameter values are: fro = 15 GHz, 4 = 5 nA,
@ =40VY, Vipe =0, Rae =1.0 @, C =02 pF, L =0.72 nH,
Rs = 58, D = 0.377 in, and the waveguide is 0.070 in high X 0.662 in
wide.
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Fig. 4. Convergence parameter | Za(nfLo) | / | Ze(nfro) | as a function
of harmonic number n after 100 iterations (dashed curve) and 300
iterations (solid curve). For 500 iterations (not shown) all harmonics
except the 16th were within 0.5 percent of unity.

Fig. 5.
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there are no voltage sources above the Nth harmonic in the circuit
of Fig. 2(a), and that the computed v; and 73 waveforms are the
same (up to the Nth harmonic) as would be computed for the mixer
if (18) were not valid and if all harmonics above the Nth were
neglected in the computation.

Diode Capacitance and Series Resistance

In explaining the method of solution of the mixer problem it was
convenient to assume a simple diode with no parasitic elements, as
described by (1). We now apply the method to two more realistic
diode models. The first, in which the diode capacitance C and series
resistance E, are both constant, requires no modification of the
method. The elements C and R, are simply considered as part of the
embedding network and the problem is solved as before.

For the second diode model the capacitance and series resistance
are functions of the diode terminal voltage. In this case the simple
circuit of Fig. 2(a) is modified to include C(»;) and R;(vs), and
numerical integration of the circuit equations is necessary in order
to determine the steady-state solutions for v:(f) and 7:(¢) each time
Step 3 of the cycle is performed. The right-propagating wave
er(L,t) now produces an initial transient response at the diode
which must be allowed to die away before the steady-state values
of vg, 74, and er(L,t) are calculated. This situation is the same as
occurs at the embedding network when a new wave e (0,f) arrives
at it.

III. EXAMPLE

To test the method a computer program was written which deter-
mines the diode waveforms 7z and v, in the waveguide mixer of Fig. 3.
The diode is mounted across the middle of a reduced-height wave-
guide, and connected through a coaxial RF choke to the bias and
IF circuits. To one side of the diode there is a waveguide short
circuit at a distance D, and on the other side the diode sees the
guide impedance

e 1/2 b 1
Zolh) =2 () a Tl = (LT 49
The impedance of the embedding network, including the RF choke
and the shorted waveguide section, is calculated at each LO har-
monic. This characterization of the mixer is not an accurate repre-
sentation at the harmonics of the LO frequency [5], [6], but it
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(a) Diode voltage. (b) Diode current for the mixer shown in

Fig. 3, after 500 iterations, considering 16 harmonics of the LO fre-
quency. Time ¢ is normalized to the LO period 7r0.
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provides a useful approximation for the purposes of this example.
The embedding impedance Z, seen by the diode at the LO frequency
and its harmonies is tabulated in Fig. 3.

Fig. 4 shows the convergence parameter | Z;( jnwro) |/| Ze(jnwio) |
as a function of harmonic number n, when 16 harmonics are consid-
ered. For 300 iterations, convergence is reasonably complete up to
the 11th harmonic. For 500 iterations | Z4 | is within 0.5 percent of
| Z, | up to the 15th harmoniec. '

The diode current and voltage waveforms are shown in Fig. 5.
The computation time per ceycle of iteration, when 16 harmonics are
considered, is 3 ms on an IBM 360/95, and 2 s on an IBM 360/50.
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Wide-Band Characteristics of a Coaxial-Cavity
Solid-State Device Mount

PHILIP H. ALEXANDER, MEMBER, IEEE,
anp PETER J. KHAN, MEMBER, IEEE

Abstract—An experimental comparison is made between two
theoretical approaches to evaluation of the driving-point impedance
at the terminals of a gap in the center conductor of a coaxial cavity.
The study shows that for wide-band characterization, radial-wave
modal-field analysis provides greater accuracy than the conventional
transmission-line approach.

I. INTRODUCTION

This short paper reports a comparison between two methods for
the analysis of a coaxial cavity over a wide frequency range. The
cavity, shown in Fig. 1, is assumed to be formed of perfectly conduct-
ing material, and contains a gap in the center conductor, within
which a solid-state device may be located. The purpose of the study
was to determine the driving-point impedance (i.e., the reactance
of the lossless structure) viewed from the gap terminals, for a wide
range of frequencies and cavity dimensions.

Attention has previously been confined to the lowest order reso-

Manuscript received May 18, 1974; revised April 14, 1975, This work
was supported by NSF Grant GK—32370.

P. H. Alexander was with the Cooley Electronics Laboratory, De-
partment of Electrical and Computer Engineering, University of Michi-
gan, Ann Arbor, Mich. 48105, on leave from the Department of Electrical
Engineering, University of Windsor, Windsor, Ont., Canada. He is now
with the Department of Electrical Engineering, University of Windsor,
‘Windsor, Ont., Canada.

P. J. Khan is with the Cooley Electronics Laboratory, Depart-
ment of Electrical and Computer Engineering, University of Michigan,
Ann Arbor, Mich. 48105.

831

2r0

o pe

-
h

i

Lossless coaxial cavity for use as a solid-state device mount.

(

2Ry

Fig. 1.

nance of the cavity, using Green’s function [1] and radial line
analyses [27, [3], in addition to conventional TEM-mode trans-
mission-line theory. Our interest in wide-band characterization arises
from the need for knowledge of harmonic-frequency impedance
values in the design of solid-state oscillators [47, [5].

II. THEORETICAL ANALYSIS

Two approaches to determination of the impedance viewed from
the center-conductor gap are described briefly here.

A. Transmission-Line Analysis

This analysis yields the circuit shown in Fig. 2. The inductance L
accounts for magnetic energy storage in the annular region of length
g, external to the gap. The capacitances Cy’ and C: represent the
gap discontinuity, determined from the approach of Green [6] and
Dawirs [7]. Cy' represents the series gap capacitance of these au-
thors, modified by subtraction of a parallel-plate capacitance Cy,
since we are interested in the impedance which loads a packaged-
device mounted in the gap; this distinction has also been made by
Getsinger [8]. Using Fig. 2, the susceptance By = —1/Xp is
given by

Br = oC — [wL + Zy(T: tan gly + T tan 8l) T (@3]
where

T; = (1 — wCoZotan gl;) 7, for 7 =1,2.

B. Radial-Wave Analysis

The input reactance is calculated by establishing two sets of radial
waves, outward bound and inward traveling, and imposing perfect-
conductor boundary conditions at r = Ro. Using the concept of
complex Poynting vector power, the radiation impedance at the gap
terminals is determined by an approach similar to that of Eisenhart
and Khan [9]; this impedance reduces to a reactance jXg for the
lossless structure considered here. Summing over all possible modes,
we obtain

o~ (Kgn)®
By = 3, Lot
" n=0 ' Z"

where

o= [ (1 + 8w)by &,][Jo (8:7) Yo (BuBo) — Jo(B:R0) Yo (ﬁm)]

dare k|| J1(Bar0) Yo(BuRo) — Jo(BR0o) Y1 (Baro)

s —

)

Equivalent circuit of the driving-point reactance, using the
transmission-line approach.

Fig. 2.



