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A Technique for Determining the Local Oscillator

Waveforms in a Microwave Mixer

A. R. KERR, ASSOCIATE MEMBER, IEEE

Abstract—A technique is described which enables the large-

signal current and voltage waveforms to be determined for a mixer

diode. This technique is applicable to any configuration where the

impedance seen by the diode at the locaf oscillator (LO) frequency

and its harmonics is known.

I. INTRODUCTION

The performance of a diode mixer is largerly determined by the

current and voltage waveforms produced at the diode by the local

oscillator (LO). These waveforms depend on the diode itself, and

on the impedance of its embedding network at the LO frequency and

its harmonics. This short paper describes a method for computing the

diode current and voltage waveforms for any mixer in which the

impedance seen by the &lode at the LO frequency and its harmonics

ig known.

In the pest there have been various approaches to this problem.

Torrey and Whitmer [1] and other-, have assumed a sinusoidal

driving voltage at the diode, all the harmonics of the LO being

assumed to be short-circuited. Fleri aud Cohen [2] used both digital

and analog computers to solve the nonlinear problem, assuming

simple lumped-element embeddhg networks.

Egami [3] and Gwarek [4] have used a harmonic balance ap-

proach in the frequency domain. However, convergence has been

found difficult to achieve for some circuits when many harmonics

are considered, and especially at large LO drke levels; and the

initial guess has a strong effect on the rate of convergence.

A recent approach by Gwarek [4] uses a time-domain analysis

to determine the diode waveforms in an qubedding network con-

sisting of a simple lumped-element network in series with a string of

voltage sources, one at each harmonic of the LO. The voltage

sources are input-voltage dependent so that the embedding network

is able to simulate any complex network as it appears at the LO

frequency and its harmonics. It is reported that this method is

convergent, and more economical of computer time and memory

than the harmonic balance technique.

In the approach dascribed here, the circuit of Fig. 1 (a) is modified
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Fig. 1. (a) The mixer circuit for which tJd and id are to be determined.

(b) The modified circuit which has the same steady-state ?)d and {d
provided L is an integral number of wavelengths at the LO frequency.

The right- and left-propagating waves on the transmission line are

denoted by eE and eL.
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Fig. 2, The two circuits whose steady-state solutions are alternately

computed to determine the steady-state solution of Fig. 1(b). The

simple nonlinear circuit (a) is solved in the time domain, the linear

circuit (b) in the frequency domain. Source amplitudes are given by

(9)–(11).

by the insertion of a transmission line, Fig. 1 (b), which, by virtue

of its electrical length at the LO frequency and its harmonics, has

no effect on the steady-state solution of the problem. It will be

shown that this enables the problem to be solved iteratively by

alternately solving the simpler circuit problems shown in Fig. 2(a)

and (b).

Hypothesis: The steady-state ‘& and vd waveforms for the two cir-

cuits of Fig. 1 are the same. Certainly the solution for Fig. 1 (b) is a

valid solution for Fig. 1 (a), but there exists the possibility of more

than one steady-state solution for Fig. 1 (a), the one which is finally

reached being determined by the particular path taken to reach the

steady state.1 An hypothesis equivalent to thm one is implicit in any

method of solution in which the calculation of the actual turn-on

transient is bypaseed.

II. METHOD

Consider the circuit of Fig. 1 (b) with the diode initially dis-

connected. When the diode is connected transient reflections occur

alternately at the two ends of the transmission line until eventually

the steady-state condition is approached. In the steady state, wavee

of constant amplitude, containing many LO harmonies generated by

the diode, propagate in each direction. The approach taken here is

to let the transmies.ion line become so long that in the periods be-

tween transient reflections a stendy-state condition is reached

1 As an example of this, it has been observed that for some mixers,

as the LO power is increased from zero, parametric oscillation will occur.

At higher power levels the oscillation ceases, and it cannot be made to

reappear unless the LO power is first reduced below some threshold

value and then increased agaiu.
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between the transmission line and the diode on the one hand,
and between the transmission line and the embedding network on

the other. The problem then reduces to that of alternately deter-
mining the steady-state solutions for the two simple circuits of Fig.

2, each time changing the voltage sources in a predetermined way,

until the terminal currents and voltages are the same for the two

circuits.
For clarity, a simple exponential diode will be assumed in describ-

ing the method: the inclusion of diode capacitance and series re-

sistance will be described later. For.the simple diode

id = io[exp (@f) — 1]. (1)

The right- and left-propagating waves on the transmission line are
denoted by en (z)t) and e~ (z,t) as shown in Fig. 1 (b). These waves

must conform to the boundary condition imposed by (1), with

@?(@) + eL(@f) = Vd(~)

and

[e~ (L,t) – e~ (L,t) ]/20 = i,(t).

At the left-hand end of the transmission line

current are

%(~) = e~ (O,t) + eB (O,t)

and

‘&(t) = [e~ (O,t) — eR (Ojt) ]/20.

(2a)

(2b)

the voltage and

(3a)

(3b)

It is convenient to express O. and i. as Fourier series

m

f). (t) = x V.,. exp ( jnfJLOt) (4a)
.-0

and

.
i.(t) = Z 1.,. exp ( jnwot) (4b)

%=0

where the Fourier coefficients V.,~ and I.,n are, in general, complex.

The steady-state boundary condition defined by the embedding

network is

v
= = 2,( j?kdLo),
I

n>l (5a)
e,n

v.,, – VLO
= 2.( JL$LO)

1.,1

and

y, ‘B=2. (o)
e.

(5b)

(5C)

where VLO and VB are the open-circuit LO and de voltages of the
embedding network.

The solution is commenced at time t = O when the diode is first

connected to the circuit of Fig. 1(b). The equivalent circuit of
Fig. 2 (a) applies, but with only two voltage sources, VB at de, and

Vw at the LO frequency. For the simple diode assumed in this

example %(t) and ‘id (t) are easily computed. During the time interval

()<t<%d

t?R (~,t) = VL9 + Vr,o (?Xp ( j&,ot) (6a)

and

efi (@) = ad(t) — & (t)ZiI (6b)

where tdis the propagation delay on the transmission line. At the

leftihand end of the transmission line the left-propagating wave is

e~ ((),t) = C?L (~,t — td). (7)

829

for which the transmission line is an integral number of wavelengths

long

e~(L,t – Li) = e~(ZJ). (8)

Therefore, during the time interval td < t < Std

eL (0$) = Vd (~) —‘& (~)zo. (9)

Expressing (9) as a Fourier series gives

The embedding network reaches steady state after ~some time 8 so

that iri the interval td + 3< t< atda new steady-state right-

propagating wave eR(O, t) exists. This may be determined knowing

the complex reflection coefficient of the embedding network at each

harmonic of the LO

z. ( jhJLo) – 20
‘“ = Z,(jncdLo)+20 “

(11)

Then

.
f3R (O!t) = VB + VLO exp ( @LO~) + ~ Pr@L,n WI ( .,h@LO~). (12)

.-0

Again e~ contains only components at the LO frequency and its

harmonicw, and so after the appropriate delay time t,t we have

@(~,t) = @ (o)t). (13)

Thk applies during the time interval Ztd+ 13<t< 4t&The diode

voltage and current vd(t)and ‘id(t) are again cahmb ted, giving the

next value of eL (L,t) from (6b), which commences the next cycle

of iteration.

Summary of Iteratwn Cycle

The typical cycle of iteration may be summarized as follows.

Step 1): From the diode voltage and current, w(t) and id(t),

compute the left-propagating wave eL (L,t) using (6b).

Step 2?): After a time t~the left-propagating wave reaches the

embedding network causing a response which reaches steady state

after a further time & Since the transmission line can be made as

long as required, it is always possible to ensure that& << td.The new

steady-state right-propagating wave at the embedding network

eR (0,0 is calculated using (11) and (12).
Step 3).’ After a further propagation delay ti this wave becomes

the new right-propagating wave at the diode, @ (L,t) from which

new values of diode voltage and current are computed using the

equivalent circuit of Fig. 2(a).

Convergence

Under steady-state operation the voltages and currents at the

two ends of the transmission line ?re equal—that is Vd(t) = v.(t)

and id(t) = —i. (t). In the frequency domain this is equivalent to

Vd,. = V.,. (14a)

and

Id,% = –I,,- (14b)

where V,i,n, Id ,m, V., ~, and I., ~ are the nth Fourier coefficients of Vd,

z~, v,, and i,, respectively. It follows that

Vd,?t= _@.

Id,n I e,n
(15)

It is convenient to define a diode impedance

Z~ ( jn@Lo) = vd,~/Id,.. (16)

Then with (5a) and (15)

Since e~ is composed only of the LO frequency and its harmonics Zd ( j~LO) = ‘.%( j~@LO), for n :.1. (17)
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We define a convergence parameter

I Zd( j?kJLO) \/l 2.( j~Lo) 1, n>l

which must be equal to unity for a completely converged solution.
For the example given in the following (Fig. 3), the convergence

parameter is shown in Fig. 4 as a function of n.
The choice of the hypothetical transmission-line characteristic

impedance ZO has some effect on the rate of convergence of the

solution. A value of 50 Q has been used in the example; the effects of
varying it have not been investigated in detail.

Finite Number of Harmonics

In a practical computer solution of the mixer problem it is poseible
to consider only afinitenumber Nof harmonics of the LO. Thieis

electrically equivalent to defining theembeddlng impedance for the

higher LO harmonics equal to the transmission-line characteristic

impedance

Ze(jwwlj) = 20, n>N. (18)

Toshowthis equivalence, consider the circuit of Fig. l(b), with Z~

as definedin (18), so that P. = O fern > N (11). From (12) and

(13) we see that the right-propagating wave e~(L,t) contains no

frequency components above the Nth LO harmonic. It follows that
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Fig. 3. (a) The wavegnide mixer used in the example, and (b) its

equivalent circuit. The embedding impedance 2. seen by the diode is

tabulated as afnnctionof harmonic number n. Guide impedance ZOis

given by (19). Parameter VdUW are: fz,o = 15GHz, io = 5nA,
a =40 V–1, Vbiae =0, R~C = 1.0 Q, C =0.2 PE, L =0.72 nH,

R. = 5CI, D =0.377 in, andthewaveguide iz0.070 in high XO.662in

wide.
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Fig. 4. Convergence parameter \ Zd(n.fLo) I / I Z~(nfLo) \ as a ~ctiOn

Of harmonic number n after 100 iterations (dashed curve) and 300

iterations (solid curve). For 500 iterations (not shown) all harmonics

except the 16th were within 0.5 percent of unity.

there areno voltage sources above the Nth harmonic in the circuit

of Fig. 2(a), and that the computed od and ‘id waveforms are the

same (uptothe Nth harmonic) as would be computed for the mixer

if (18) were not valid and if all harmonics above the Nth were

neglected in the computation.

Dwde Capacitance and Series Resistance

In explaining the method of solution of the mixer problem it wee

convenient to assume a simple diode with no parasitic elements, as

described by (l). We now apply the method to two more realktic

diode models. The first, in which the diode capacitance C and series

resistance R. are both constant, requires no modification of the ‘
method. Theelements Canal R, are simply considered as part of the

embedding network and the problem is solved as before.

Forthesecond diode model the capacitance and series resistance

are functions of the diode terminal voltage. In this case the simple

circuit of Fig. 2(a) is modified to include C(vd) and R,(m), and

numerical integration of the circuit equations is necessary in order

todetermine thesteady-state solutions forw(t) and ii(t) each time

Step 3 of the cycle is performed. The rightipropagating wave

e~(L,O now producw an initial transient response at the diode
which must be allowed to die away before the steady-state values

of Vd, id, and e~(L,t) are calculated. This situation is the same as

occurs at the embedding network when a new wave er, (O,t) arrives

at it.

III. EXAMPLE

To test the method a computer program was written which deter-

mines the diode waveforms id and% in the waveguide mixer of Fig. 3.

The diode is mounted across the middle of a reduced-height wave-

guide, and connected through a coaxial RF choke to the bias and

IF circuits. To one side of the diode there is a waveguide short

circuit at a distance D, and on the other side the diode sees the

guide impedance

()
1/2~

z,(f) =2 ~
1

E ; [1 — (f./j)2]1/2”
(19)

The impedance of the embedding network, including the RF choke

and the shorted waveguide section, is calculated at each LO har-

monic. This characterization of the mixer is not an accurate repre-

sentation at the harmonies of the LO frequency [5], [6], but it

‘d(:P+l
‘I__u_I

o 025 050 075 ICO 125 15C
t/rLo

(a)

40

t,JmA)

20
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o 025 050 0.75 100 125 I50
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(b)

Fig. 5. (a) Diode voltage. (b) Diode current for the mixer shown in

Fig. 3, after 500 iterations, considering 16 harmonics of the LO fr~

quency. Time t is normalized to the LO period rLo.
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provides a useful approximation for the purposes of this example.

The embedding impedance 2. seen by the diode at the LO frequency

and its harmonics is tabulated in Fig. 3.

Fig. 4 shows the convergence parameter I 2.( ~nOJLO) 1/1 2.( @@Lo) \

as a function of harmonic number n, when 16 harmonics are consid-

ered. For 300 iterations, convergence is reasonably complete up to

the llth harmonic. For 500 iterations ] Z~ I is within 0.5 percent of

I Z, ] up to the 15th harmonic.

The diode current and voltage waveforms are shown in Fig. 5.

The computation time per cycle of iteration, when 16 harmonics are

considered, is 3 ms on an IBM 360/95, and 2 s on an IBM 360/50.
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Wide-Band Characteristics of a Coaxial-Cavity

Solid-State Device Mount

PHILIP H. ALEXANDER, MEMBER, IEEE,
AND PETER J. KHAN, MEMBER, IEEE

Abstract—An experimental comparison is made between two

theoretical approaches to evaluation of the driving-point impedance

at the terminals of a gap in the center conductor of a coaxiaf cavity:

The study shows that for wide-bend characterization, radial-wave

modal-field analysis provides greater accuracy than the conventional

transmission-line approach.

I. INTRODUCTION

Thk short paper reports a comparison between two methods for

the analysis of a coaxial cavity over a wide frequency range. The

cavity, shown in Fig. 1, is assumed to be formed of perfectly conduct-

ing material, and contains a gap in the center conductor, within

which a solid-state device may be located. The purpose of the study

was to determine the driving-point impedance (i.e., the reactance

of the lossless structure) viewed from the gap terminals, for a wide

range of frequencies and cavity dimensions.

Attention has previously been confined to the lowest order reso-
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J?ig. 1. Lossless coaxial cavity for use as a solid-state device mount.

nance of the cavity, using Green’s function [1] and radial line

analyses [2], [3], in addkion to conventional TE M-mode trans-

mission-line theory. Our interest in wide-band characl;erization arises

from the need for knowledge of harmonic-frequency impedance

values in the design of solid-state oscillators [4], [5 ~].

IL THEORETICAL ANALYSIS

Two approaches to determination of the impedance viewed from

the center-conductor gap are described briefly here.

A. Tranemiesion-Line Analysis

This analysis yields the circ& shown in Fig. 2. The inductance L

accounts for magnetic energy storage in the annular region of length

g, external to the gap. The capacitances C,’ and C2 represent the

gap discontinuity, detertiined from the approach of Green [6] and

Dawirs [7]. Cl’ represents the series gap capacitance of these au-

thors, modified by subtraction of a parallel-plate capacitance CO,

since we are interested in the impedance which loads a packaged o

device mounted in the gap; this distinction has also been made by

Getsinger [8]. Using Fig. 2, the susceptance B,R = – l/XR is

given by

& = WC,’ – [aL + ZO (T, tan ,6JI + T’2 tan L%) 1-’ (1)

where

Ti = (1 – aC2Z0 tan @i)’$ for i = 1,2.

B. Radial-Wave Analysis

The input reactance is calculated by establishing two sets of rrdal

waves, outward bound and inward traveling, and imposing perfect-

conductor boundary conditions at r = Ro. Using l~he concept of

complex Poynting vector power, the radiation impedance at the gap

terminals is determined by an approach similar to that of Eisenhart

and Khan [9]; this impedance reduces to a reactance jXR for the

losslesa structure considered here. Summing over all possible modes,

we obtain

where

+&,----.-l
0

I I I

G1
J-C*

&l. b-h-9/z
c’, L

A?2= h-g/2

C2

+++

Fig. 2. Equivalent circuit of the driving-point reactance, using the

transmission-line approach.


